16
How to Build a Simple WebP Conversion Tool with Python, Qt and OpenCV
"WebP is an image format employing both lossy and lossless compression, and supports animation and alpha transparency. Developed by Google, it is designed to create files that are smaller for the same quality, or of higher quality for the same size, than JPEG, PNG, and GIF image formats" - Wikipedia. Speed is one of the key factors of SEO optimization. Developers tend to use WebP to replace JPEG, PNG, and GIF in order to make web pages SEO friendly. This article demonstrates how to build a simple WebP conversion tool with Python, Qt and OpenCV.
- Python 3.x
-
OpenCV and Qt (pyside2 or pyside6)
pip install opencv-python pyside2
Let's open Python/Lib/site-packages/PySide2/designer
to design the GUI.
- Label: display the loaded image.
- Horizontal Slider: adjust the quality of the WebP image.
- Push Button: trigger WebP conversion.
- List Widget: append image files to the list.
Once the UI design is done, we convert the .ui
file to .py
file using pyside2-uic
, which is located at Python/Scripts/
.
pyside2-uic design.ui -o design.py
The next step is to load the design.py
file and add the following code to the main.py
file:
import sys
from PySide2.QtGui import QPixmap, QImage, QPainter, QPen, QColor
from PySide2.QtWidgets import QApplication, QMainWindow, QInputDialog
from PySide2.QtCore import QFile, QTimer, QEvent
from PySide2.QtWidgets import *
from design import Ui_MainWindow
import os
import cv2
from PySide2.QtCore import QObject, QThread, Signal
class MainWindow(QMainWindow):
def __init__(self):
super(MainWindow, self).__init__()
self.ui = Ui_MainWindow()
self.ui.setupUi(self)
self.setAcceptDrops(True)
def main():
app = QApplication(sys.argv)
window = MainWindow()
window.show()
sys.exit(app.exec_())
if __name__ == '__main__':
main()
Now, running the main.py
file will show the GUI.
There are two ways to load an image file or a folder:
- Click a button to open the system file dialog.
- Drag and drop the image file or folder to the application.
To open the system file dialog, we use QFileDialog
, which provides getOpenFileName
to pick a file and getExistingDirectory
to pick a directory.
self.ui.actionOpen_File.triggered.connect(self.openFile)
self.ui.actionOpen_Folder.triggered.connect(self.openFolder)
def openFile(self):
filename = QFileDialog.getOpenFileName(self, 'Open File',
self._path, "Barcode images (*)")
def openFolder(self):
directory = QFileDialog.getExistingDirectory(self, 'Open Folder',
self._path, QFileDialog.ShowDirsOnly)
To enable drag and drop for file and folder, we must set setAcceptDrops(True)
for the MainWindow
and override the dragEnterEvent
and dropEvent
methods:
def __init__(self):
# ...
self.setAcceptDrops(True)
def dragEnterEvent(self, event):
event.acceptProposedAction()
def dropEvent(self, event):
urls = event.mimeData().urls()
filename = urls[0].toLocalFile()
if os.path.isdir(filename):
self.appendFolder(filename)
else:
self.appendFile(filename)
event.acceptProposedAction()
As we get the file path, create a new list widget item and add it to the list widget:
item = QListWidgetItem()
item.setText(filename)
self.ui.listWidget.addItem(item)
To display the image in the Qt label, we need to convert Mat to QImage:
def showImage(self, filename):
frame = cv2.imread(filename)
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
image = QImage(frame, frame.shape[1], frame.shape[0], frame.strides[0], QImage.Format_RGB888)
pixmap = QPixmap.fromImage(image)
self._pixmap = self.resizeImage(pixmap)
self.ui.label.setPixmap(self._pixmap)
return frame
Because the latest OpenCV supports WebP, it is convenient to convert an image to WebP using cv2.imwrite()
:
quality = int(self.ui.horizontalSlider.value())
frame = cv2.imread(filename)
webp_file = filename.split('.')[0] + '.webp'
cv2.imwrite(webp_file, frame, [cv2.IMWRITE_WEBP_QUALITY, quality])
Considering the performance of operating multiple images, we move the WebP conversion code to a worker thread. In addition, showing a progress bar makes the application more responsive.
class Worker(QObject):
finished = Signal()
progress = Signal(object)
def __init__(self, files, quality):
super(Worker, self).__init__()
self.files = files
self.total = len(files)
self.isRunning = True
self.quality = quality
def run(self):
count = 0
keys = list(self.files.keys())
while self.isRunning and len(self.files) > 0:
filename = keys[count]
count += 1
print(filename)
frame = cv2.imread(filename)
webp_file = filename.split('.')[0] + '.webp'
cv2.imwrite(webp_file, frame, [cv2.IMWRITE_WEBP_QUALITY, self.quality])
self.progress.emit((webp_file, count, self.total))
self.files.pop(filename)
self.finished.emit()
def reportProgress(self, data):
filename, completed, total = data
self.addImage(filename)
if not self.isProcessing:
return
progress = completed
self.progress_dialog.setLabelText(str(completed) +"/"+ str(total))
self.progress_dialog.setValue(progress)
if completed == total:
self.onProgressDialogCanceled()
self.showMessageBox('WebP Conversion', "Done!")
def onProgressDialogCanceled(self):
self.isProcessing = False
self.worker.isRunning = False
self.progress_dialog.cancel()
def runLongTask(self):
if (len(self._all_images) == 0):
return
self.isProcessing = True
self.progress_dialog = QProgressDialog('Progress', 'Cancel', 0, len(self._all_images), self)
self.progress_dialog.setLabelText('Progress')
self.progress_dialog.setCancelButtonText('Cancel')
self.progress_dialog.setRange(0, len(self._all_images))
self.progress_dialog.setValue(0)
self.progress_dialog.setMinimumDuration(0)
self.progress_dialog.show()
self.progress_dialog.canceled.connect(self.onProgressDialogCanceled)
self.thread = QThread()
self.worker = Worker(self._all_images, int(self.ui.label_slider.text()))
self.worker.moveToThread(self.thread)
self.thread.started.connect(self.worker.run)
self.worker.finished.connect(self.thread.quit)
self.worker.finished.connect(self.worker.deleteLater)
self.thread.finished.connect(self.thread.deleteLater)
self.worker.progress.connect(self.reportProgress)
self.thread.start()
python main.py
16