28
ML Lens: AWS Well-Architected Framework | AWS White Paper Summary
- Machine Learning Stack
- Phases of ML Workloads





- Gather, understand, and prepare the bird image dataset
- Train the object detection model using the Amazon SageMaker built-in algorithm
- Host the model using an Amazon SageMaker endpoint
a. Convert the model artifacts before you deploy to AWS DeepLens
b. Optimize the model from your AWS Lambda function on AWS DeepLens
b. Optimize the model from your AWS Lambda function on AWS DeepLens
The following is a sample production variant configuration for a standard deployment.
ProductionVariants=[{
'InstanceType':'ml.m4.xlarge',
'InitialInstanceCount':1,
'ModelName':model_name,
'VariantName':'AllTraffic'
}])
The following is a sample production variant configuration for A/B testing.
ProductionVariants=[
{
'InstanceType':'ml.m4.xlarge',
'InitialInstanceCount':1,
'ModelName':'model_name_a',
'VariantName':'Model-A',
'InitialVariantWeight':1
},
{
'InstanceType':'ml.m4.xlarge',
'InitialInstanceCount':1,
'ModelName':'model_name_b',
'VariantName':'Model-B',
'InitialVariantWeight':1
}
])
- Business Evaluation (accordinf to some criteria such as KPIs).
- Model Evaluation (Accuracy, Precision, Recall, etc.)
- System Evaluation (Resources capabilities: CPU, memory intensive consumption, etc).
## Cost Optimization Pillar
### Design Principles
28