23
Awesome Data Science Project Portfolio
Working on some cool and creative projects shows a higher level of skills in technical skills. Convincing an employer to hire you can be quit challenging if your portfolio is below average. Data science field has a million of awesome projects. Displaying awesome line of codes and nice models keeps you on the safer side of getting that dream job. The best thing about Data science is that projects can never be exhausted, so basically you can use this sector to solve the very basic challenge you meet every day.
Some simple tricks to build your portfolio as a data science are checking job listings to determine what your future employer is going to expect from you, generating project ideas and this is basically answering that answered question posing a challenge in a real life situation, determining some very useful resources as a developer and keep going every day. Below are some top five projects that are cool and I recommend them for intermediate level data science developers.
Some simple tricks to build your portfolio as a data science are checking job listings to determine what your future employer is going to expect from you, generating project ideas and this is basically answering that answered question posing a challenge in a real life situation, determining some very useful resources as a developer and keep going every day. Below are some top five projects that are cool and I recommend them for intermediate level data science developers.
This sounds really cool! Developing a model that checks if a client is eligible to get financial loan from a financial institution like a bank or microfinance is very possible using algorithms. Algorithms to be used here include Logistic Regression, Native Bayes and Random Forest. To implement a successful model you need Python and R languages. Steps followed by this system are;
Client files the loan application form
Submission at the institution
Checking of his/her Credit level score
• A low score will lead to loan decline
• High score leads to loan Approval
Submission at the institution
Checking of his/her Credit level score
• A low score will lead to loan decline
• High score leads to loan Approval
Forest fire poses a great challenge to the global climate condition. In an event of such fires, millions of hectares are destroyed by fire and wildlife habitat is destroyed. Also these fires may kill wild animals as well as humans who depend on this forest for their daily living; these humans are game wardens, and other forest workers. As a data scientist it is our duty to keep our environment clean and healthy.
Implementing these projects needs Artificial Neural Networks and Support Vector Machine algorithms. Languages to help you achieve this success are Python and R. Some areas are more prone to forest fire outbreaks, developing a model that predicts the next location of a forest fire can be a millstone in the world anti-forest fire campaign. Globally forest fires area threat to every government especially during the sunny seasons. Stages for this project are;
Implementing these projects needs Artificial Neural Networks and Support Vector Machine algorithms. Languages to help you achieve this success are Python and R. Some areas are more prone to forest fire outbreaks, developing a model that predicts the next location of a forest fire can be a millstone in the world anti-forest fire campaign. Globally forest fires area threat to every government especially during the sunny seasons. Stages for this project are;
Dataset
Data Exploration
Training the model
Model Evaluation
Visualization predictions
Data Exploration
Training the model
Model Evaluation
Visualization predictions
Sometimes predicting the condition of the weather tricks forecasters and might lead to catastrophic events. Wrong weather forecasting leads to confusion; also sometimes the weather tricks us! A model that predicts the climatic conditions is a cool project to work on especially in 2021 when everyone has embraced online and working from home. Such a model tells you what time to go for a date and when to expect harsh low temperatures; this will make you buy some coffee. Algorithms to use in this model include Support Vector Machine and Decision tree. Actually data science will turn your career to a weather researcher! Having a proper background knowledge and understanding on python and R languages is all you need for this project. Steps followed for this success are;
Dataset
Visualize and find insights
Predict the future climate data.
Visualize and find insights
Predict the future climate data.
23