NumPy - ndarrays

⚡️ndarrays
One of the key features of NumPy is its N-dimensional array object, or ndarray,
which is a fast, flexible container for large datasets in Python. Arrays enable you to
perform mathematical operations on whole blocks of data using similar syntax to the
equivalent operations between scalar elements.
⚡️Creating arrays
First of all import numpy
import numpy as np
a = np.array([1,2,3,4,5])
b = np.array([[1.0,2.0,3.0],[4.0,5.0,6.0]])
⚡️Getting Dimension of array
print(a.ndim) # 1
print(b.ndim) # 2
⚡️Getting Shape of an array
print(array.shape) # (rows ,column) in case of 2d arrays

print(a.shape) # (3, )
print(a.shape) # (2,3)
⚡️Get type of an array
print(a.dtype) # int32
print(b.dtype) # float64
  • Most of the time dtype is float64 by default
  • I will talk more about dtypes and changing dtypes in next post
  • ⚡️Get size of an array
    # Gets size of a single element in the array (dependent on dtype)
    print(a.itemsize) # 4 (because int32 has 32 bits or 4 bytes)
    
    # Gets size of array
    print(a.size) # 5
    
    # So total size can be written as 
    print(a.itemsize * a.size) # 20
    
    # or we can directly use a method called nbytes
    print(a.nbytes) # 20
    ⚡️Methods of initializing an array
    📌 assarray
    a_list = [1, 2, 3]
    a_array = np.asarray(a_list)
    
    print(a_array)        # [1 2 3]
    print(type(a_array))  # <class 'numpy.ndarray'>
    📌 arange
    a = np.arange(5)
    
    print(a) # [0,1,2,3,4]
    📌 ones
    # Syntax np.ones(shape,dtype)
    
    a = np.ones((3, 3), dtype='int32')
    
    print(a)
    """
    
    [[1 1 1]
     [1 1 1]
     [1 1 1]]
    
    """
    📌 ones_like
    # Syntax np.ones_like(numpy_array,dtype)
    
    arr = np.array([[1, 2], [3, 4]])
    a = np.ones_like(arr, dtype="int32")
    
    print(a)
    """
    
    [[1 1]
     [1 1]]
    
    """
    📌 zeros
    # Syntax np.zeros(shape,dtype)
    
    a = np.zeros((3, 3), dtype='int32')
    
    print(a)
    """
    
    [[0 0 0]
     [0 0 0]
     [0 0 0]]
    
    """
    📌 zeros_like
    # Syntax np.zeros_like(numpy_array,dtype)
    
    arr = np.array([[1, 2], [3, 4]])
    a = np.zeros_like(arr, dtype="int32")
    
    print(a)
    """
    
    [[0 0]
     [0 0]]
    
    """
    📌 empty
    # Syntax np.empty(shape,dtype)
    a = np.empty((3, 2))
    print(a) # Does not Initialize but fills in with arbitrary values
    """
    
    [[7.14497594e+159 1.07907047e+219]
     [1.17119997e+171 5.02065932e+276]
     [1.48505869e-076 1.93167737e-314]]
    
    """
    📌 empty_like
    # Syntax np.empty_like(numpy_array,dtype)
    
    arr = np.array([[1, 2], [3, 4]])
    a = np.empty_like(arr, dtype="int32")
    
    print(a)
    """
    
    [[-1290627329  -717194661]
     [ 1707377199  1980049554]]
    
    """
    📌 full
    # Syntax np.full(shape,fill_value,dtype)
    
    a = np.full((5, 5), 99)
    print(a)
    """
    
    [[99 99 99 99 99]
     [99 99 99 99 99]
     [99 99 99 99 99]
     [99 99 99 99 99]
     [99 99 99 99 99]]
    
    """
    📌 full_like
    # Syntax np.full_like(shape,fill_value,dtype)
    
    arr = np.empty((4, 2))
    a = np.full_like(arr, 25)
    
    print(a)
    """
    
    [[25. 25.]
     [25. 25.]
     [25. 25.]
     [25. 25.]]
    
    """
    📌 identity
  • Create a square N × N identity matrix (1s on the diagonal and 0s elsewhere)
  • # Syntax np.identity(n,dtype) (or)
    #        np.eye(n,dtype)
    
    a = np.idetity(6)
    print(a)
    
    """
    
    [[1. 0. 0. 0. 0. 0.]
     [0. 1. 0. 0. 0. 0.]
     [0. 0. 1. 0. 0. 0.]
     [0. 0. 0. 1. 0. 0.]
     [0. 0. 0. 0. 1. 0.]
     [0. 0. 0. 0. 0. 1.]]
    
    """
    ⚡️Join my Discord for Updates and downloads for future materials

    25

    This website collects cookies to deliver better user experience

    NumPy - ndarrays