Getting started with pandas (practical example) 2021

Pandas is a fast, powerful, flexible and easy to use open source data analysis and manipulation tool,
built on top of the Python programming language.
What does that even mean?
Lets get practical. We will be doing the following.
  • Get a few python list
  • Set up the data in clean way
  • Export the data to an excel sheet
  • Clean up raw data
    Lets take some random data. We will make two list number and email
    number = []
    email = []
    
    data = [
        {
            'numberrange': "53262",
            'email':'eu@aol.com',
        },
        {
            'numberrange': "553343",
            'email': "non.hendrerit.id@google.ca"
        },
        {
            'numberrange': "638442",
            'email': "donec.tempus.lorem@google.couk"
        },
        {
            'numberrange': "75523",
            'email': "lorem.vitae.odio@aol.org"
        },
        {
            'numberrange': "66493",
            'email': "orci.lacus@aol.edu"
        }
    ]
    Looping the data
    Now lets loop the data and get all instances of 'numberrange' and 'email'. We will append the results to our list we made above.
    for i in data:
        print(i['numberrange'])
        print(i['email'])
        number.append(i['numberrange'])
        email.append(i['email'])
    Putting it all together
    import pandas as pd
    
    number = []
    email = []
    
    
    
    
    data = [
        {
            'numberrange': "53262",
            'email':'eu@aol.com',
        },
        {
            'numberrange': "553343",
            'email': "non.hendrerit.id@google.ca"
        },
        {
            'numberrange': "638442",
            'email': "donec.tempus.lorem@google.couk"
        },
        {
            'numberrange': "75523",
            'email': "lorem.vitae.odio@aol.org"
        },
        {
            'numberrange': "66493",
            'email': "orci.lacus@aol.edu"
        }
    ]
    
    
    for i in data:
        print(i['numberrange'])
        print(i['email'])
        number.append(i['numberrange'])
        email.append(i['email'])
    
    
    
    df = pd.DataFrame()
    
    df['Number'] = number
    df['Email'] = email
    
    
    
    # Converting to excel
    df.to_excel('Make_an_excel_sheet.xlsx', index=False)

    36

    This website collects cookies to deliver better user experience

    Getting started with pandas (practical example) 2021